Ada Runtime Error Generator

Design Document

Date:18/12/2020

Instititid Teicneolaiochta Cheatharlach

L) INSTITUTE of
TECHNOLOGY

CARLOW Add

At the Heart of South Leinster T, Shosted. safe and secure

Student: Derry Brennan

Student number: C00231080

Supervisor: Chris Meudec

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 2

DECLARATION

| hereby declare that this research project titled “Ada runtime error
generator” has been written by me under the supervision of Dr. Christophe
Meudec.

The work has not been presented in any previous research for the award of
bachelor degree to the best of my knowledge.

The work is entirely mine and | accept the sole responsibility for any errors
that might be found in the work, while the references to published materials
have been duly acknowledged.

| have provided a complete table of reference of all works and sources used
in the preparation of this document.

| understand that failure to conform with the Institute’s regulations
governing plagiarism constitutes a serious offence.

Signature: Derry Brennan Date: 29/04/2.021

Derry Brennan (Student)
C00231080 (Student Number)

The above declaration is confirmed by:

Signature: (Chris Meudec Date: 29/04/2021

Dr. Christophe Meudec (Project Supervisor)

Ada Runtime Error Generator | Design Document

Table Of contents

Table of Figures
Abstract
1 Introduction
2 Initial setup
2.1 Compilation
2.2 Parsing
2.3 Parsing additions
3. Extension Idea
4. Targeted Hardware/Software
5. Algorithms
5.1 Copy current Directory
5.2 Get Mika Comment
5.3 Activate
5.3.1 Insert_at_position

References

C00231080 | Derry Brennan | Page 3

O VW 0 N »

11
14
20
39
40
40
41
42
44
48

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 4

Table of Figures
Figure 1 - Project with output files in VS2019 9
Figure 2 - Error received trying to execute the project 10
Figure 3 - Linking the project to required files from mika 10
Figure 4 - the correct way to obtain executable file 11
Figure 5 - The output from compilation, with debug specified 11
Figure 6 - IF statement from the ada.y grammar definitions 12
Figure 7 - The definition of safety to being the integer 5 13
Figure 8 - How the parser was used to build up a prolog term in
example.pl 14
Figure 9 -Example.adb, used to run the as a test program 15
Figure 10 - Addition to the ada.y file to construct a new prolog function
whenever a division token is encountered 16
Figure 11 - New prolog function addition run on example.adb 16
Figure 12 - Coverage details generated in the prolog file 17
Figure 13 - Definition of RUNE 18
Figure 14 - Instantiation of runtime_nb 18
Figure 15 - Print coverage details additional switch case 18

Figure 16 - additions to indexed_component to construct the correct
checks within the generated prolog file 19

Figure 17 - Example Ada code used to demonstrate the special -#Mika
comment to be used 21

Figure 18 - Ada code to show an example of the SecretMikaCall
procedure definition and call within a program 23

Ada Runtime Error Generator | Design Document
C00231080 | Derry Brennan | Page 5

Figure 19 - A test to see if the procedure definition could come after the
call in the flow of a package 24

Figure 20 - figure 19 layout only works with an addition to the files .ads
file also 25

Figure 21 - another test of inserting procedure definition into an .ads file,
it was determined this was unnecessarily complicated 25

Figure 22 - By defining the SecretMikaCall procedure at the start of the
package, no additions to the .ads fille were necessary Figure 23 -
Removal of the SecretMikaCall from the .ads file 26

Figure 24 - Example of the Mika comments within code and the structure
that they take 28

Figure 25 - Errors highlighting the fact that the developer must supply
correct syntax and typing for the boolean condition. Here Integers were
entered while X & Y were of type my_float 28

Figure 26 - comments entered while respecting the correct types used
within the program 30

Figure 27 - Example of the programmatically entered Procedure
declaration and calls for each comment 31

Figure 28 - The extensions setting options for obtaining GNAT & Mika

path if non defaults paths are used 33
Figure 29 - Checks performed to make sure both paths exist before
progressing 34
Figure 30 - Example format of the json file used to relay results from
Mika to the extension 35
Figure 31 - Json file with example values 36

Figure 32 - A pop up explanation that was eventually removed in favour
of the readme file 36

Ada Runtime Error Generator | Design Document
C00231080 | Derry Brennan | Page 6

Figure 33 - The code behind parsing the source code for the presence of

—-#Mika comments 38
Figure 34 - Copy current directory function 40
Figure 35 - Get Mika comment function 41
Figure 36 - Activate Function within the extension 42
Figure 37 - Registration of a command name to a function 42
Figure 38 - Start of the Generate test input command 42
Figure 39 - Code within generate test input that handles the insertion of
secret Mika procedure and calls 43
Figure 40 - Acquiring Paths from extensions settings 44
Figure 41 - Commands used to call Mika stored in an array 45

Figure 42 - Error message displayed to user if Either path does not exists
46

Figure 43 - Using Glob to search for newly created folder with date/time

stamp in its name 46
Figure 44 - Generation of the new tab displaying results from Mika to the
User 46
Figure 45 - Removal of the directory containing copied files used for
input generation 47
Figure 46 - Simple command used to insert boilerplate Mika comment at
highlighted line in the text editor 47
Figure 47 - Required Node.js packages for the extension 47

Figure 48 - Constant values for Strings used within the extension 48

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 7

Abstract

“Ada is a state-of-the-art programming language that development teams
worldwide are wusing for critical software: from microkernels and
small-footprint, real-time embedded systems to large-scale enterprise
applications, and everything in between.” [1] Used by the military, avionics
and many other fields where safety is of critical importance.

With the reliance of safety in Ada it is pertinent to look into the ability to
have run-time error free programs. An error that happens in the field could
cause the loss of life or the destruction of property. My goal is to produce a
prototype proof-of-concept tool which will be able to take Ada code and be
able to tell the programmer if there is any possibility of runtime errors in
their code and where. This document will be focused on my research in the
different areas required for this project such as Ada itself, parsers and the
different types of runtime errors.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 8

T Introduction

As technology expands throughout the world, taking control of complex
tasks such as avionics and missile control, the need to make sure such
software is free from as many errors as possible is of paramount
importance. Programming languages have many forms of error checking in
place already, with the integrated development environments having both
semantic and syntactic errors being detected as the code is being written.
But runtime errors are more difficult to find and not as much research and
development has gone into the finding of such errors before.

Runtime errors such as division by zero, integer overflow and index out of
bounds errors can cause a program to output unexpected results or to
cease functioning entirely, neither of which is a good result, especially
where lives are at stake.

Ada is a programming language that has its focus on safety and was seen
as an ideal candidate to provide the testing ground for such a tool.

The Ada runtime error generator will be a tool that can be used by an Ada
programmer who wishes to test their code for the presence of possible
runtime errors.

This document will describe the process of the design of both the Ada
runtime error generator and the Mika extension for Visual Studio Code.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 9

2 Initial setup

2.1 Compilation

The first part of the process of understanding how to accomplish the task
set out by the project was to compile the Ada parser used by the Mika tool.

There are two Flex files, ourxref.l and ada.l and two bison files ourxref.y and
ada.y. The ourxref files need to be run through Flex and Bison respectively
to produce output files used for compilation, these are lex.yy.c produced
from ourxref.l and ourxref.tab.c and ourxref.tab.h produced from the
ourxref.y file.

Once these output files have been produced they need to be added to a
blank Visual Studio 2019 project. This is where some difficulties were
encountered, see figure 15 below.

1 Solution Test2' (1 of 1 project)
4 |4 Test?
[=B References
I+ NF External Dependencies
4 o] Header Files
b [8 ouncreftab.h

Ml Resource Files
4 o] Source Files

b lexyy.c

P [ourxreftab.c

Figure 1 - Project with output files in VS2019

Upon executing this project the project was met with errors as shown in
figure 16. A double check was done to make sure that the required folders
were linked to the project's C/C++ include directories and the correct
folders were indeed present as shown in figure 17.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 10

B3 Microsoft Visual Studie Debug Consale — O X

'-a' is not recognized as an internal or external command,

operable program or batch file.

Mika ERROR: call to gnat 1ls (to see if unit exists) failed: -a -0 C:\Users\d
erry\source\repos\Test2\Debug\Test2.exe > mika_tmp.txt

C:\Users\derry\source\repos\Test2\Debug\Test2.exe (process 29476) exited with co
de 10@.

To automatically close the console when debugging stops, enable Tools->Options->
Debugging->Automatically close the console when debugging stops.

Press any key to close this window .

Figure 2 - Error received trying to execute the project

Test2 Property Pages I x

| Platform: | Active(Win32) v Configuration Manager...

ing\win_flex_bison-2.5.23;C:\Mil ing! e;%(AdditionalIncludeDirectories) ~

Additional #using Directories

Additional BMI Directories

Additional Module Dependencies

Additional Header Unit Dependencies

Debug Information Format Program Database for Edit And Continue (/Z1)

Support Just My Code Debugging Yes (IMC)
Common Language RunTime Support

Consume Windows Runtime Extension

Suppress Startup Banner Yes (/nologo)

Warning Level Level3 (/W3)

Treat Warnings As Errors Mo (/WX-)

Warning Version

Diagnostics Format Column Info (/diagnostics:column)
SDL checks Yes (/sdl)

Multi-processor Compilation
Enable Address Sanitizer (Experimental) Mo

Figure 3 - Linking the project to required files from mika

After a prolonged period of confusion the correct way of obtaining the
needed executable files from the compilation of the project was
determined. As is depicted in figure 18, right clicking on the solution and
selecting build compiles the output files and generates the necessary files
(figure 19). With this knowledge in hand the next step was to compile the
ada.l and ada.y files in the same manner.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 11

4] Source Files
b [adatab.c
b lexyyc

b [queuec
a [ET Ta~tT

ey Build
Rebuild

Clean

View

Analyze and Code Cleanup
Project Only

Publish as Azure WebJob ...
Retarget Projects

Figure 4 - the correct way to obtain executable file

<« Testd » Debug v | @ Search Debug

Mame Date modified Type Size
[#:] ada_parser.exe 28/11/2020 15:25 Application 271 KB
| ada_parser.ilk 28/11/2020 15:25 Incremental Linke... 733 KB
& ada_parser.pdb 28/11/2020 15:25 Program Debug D... 628 KB

5 (] Test2.exe 27/11,/2020 15:43 Application Te KB
[N Test2.ilk 271172020 13:43 Incremental Linke... 312KB
& Test2.pdb 27/11/2020 15:43 Program Debug D... 460 KB

Figure 5 - The output from compilation, with debug specified

The compilation of the Ada parser went somewhat smoother than the initial
step, but there were some hitches encountered here too. Upon selecting the
build option the linker was complaining that it was missing files related to
the queue. These files were included in the C/C++ include directory as they
were for the ourxref compilation. The solution that was achieved was just
to place the files that it wanted directly into the project solution and then
the compilation successfully completed.

2.2 Parsing

Now with the parser built it was time to run it on some test code, the parser
was run on the example code from figure 8 and a supplied example code
from Mika relating to dates.

Ada Runtime Error Generator | Design Document
C00231080 | Derry Brennan | Page 12

To begin parsing from the command line the following command is
entered: mika_ada_parser -M"C:\Mika\bin" -f"C:\GNAT\2010\bin" -gnat05 -d
“file to parse” (without extensions). The parser executable was copied into
the folder where the target code was present and the above command line
entry was tried. Environmental variables had been set for both the Mika\bin
and the GNAT\2010\bin but unfortunately there was no bin folder in the
Mika project and no way to compile it yet to produce one. A GUI version of
Mika had been downloaded to provide examples for how it worked earlier
so the \bin folder in that version was referenced instead which was found
at “C:\Users\derry\AppData\Roaming\Midoan\Mika\bin" and the parsing
completed.

Initially with a very limited understanding of how the parser actually worked,
a study of a section of the bison file and how it was parsed in relation to the
two sample pieces of code was undertaken. The section in question being
the IF statement and how a parser sees that.

newParsing > ada_parser > = aday _

if statement : IF cond_clause_list else_opt END IF ';°'
{$$ = malloc((SAFETY+strlen($2)+strlen($3)+14));
strcpy($$, "if_stmt([");
strcat($$, $2);
strcat($$, "1, ");

strcat($$, $3);
strcat($$, ")");
free($2);
free($3);

Figure 6 - IF statement from the ada.y grammar definitions

In figure 20 using bison the rules of how an if statement in Ada is formed is
given, the definition on line 2679, if_statement : IF cond_clause_list else_opt
END IF ;. Here it is given a rule that an if statement (if_statement) consists
of an if (IF), followed by a list of conditional clauses (cond_clause_list) this

Ada Runtime Error Generator | Design Document
C00231080 | Derry Brennan | Page 13

can be a list of just one conditional clause or many, followed by an optional
else statement (else_opt) this does not need to be present to make a valid
if statement, but it is looked for all the same, followed by an end if
statement (END IF) and lastly a semicolon ().

Underneath this definition is how the parser will build up the if statement
from the tokenization of the source code. The next line on 2680, {SS =
malloc((SAFETY+strlen($2)+strlen($§3)+14)); has a few interesting
qualities, firstly the ‘SS’ is the ‘if_statement’ from the above line and this line
of code is an assignment statement, firstly allocating memory for the
variable using malloc [30] which is a C language function which allocates
memory of a given size and returns a pointer to it. As seen in figure 21
‘SAFETY’ was defined as 5 within the program, so 5 is added to the length
of the second token ($2) and added to the third token ($3), plus 14. Once
the memory has been allocated to SS (if_statement) the code precedes to
copy in a string and concatenate further strings to it.

#define SAFETY 5 //number of characters added to malloc

Figure 7 - The definition of safety to being the integer 5

Starting with the string “if_stmt([", followed by concatenating the string
value of the second token ($2) which was the list of conditional clauses
(cond_clause_list), followed by another string “], ", followed by the third
token ($3) which was the optional else (else_opt) and finally another string
“)”. This leads to the building up of the string seen below in figure 8,
consisting of lines 164 to 168.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 14

C: > Ada test code > Runtime errors mple_mika > = example.pl

stmts([
if stmt([if_clause(bran(1l, deci(1, cond(1, A_367 <> 0))),
stmts ([
assign(Y_370, 3 + X_369)
M1,
else(stmts([]))),
if stmt([if_clause(bran(2, deci(2, cond(2, B_368 = 0))),
stmts ([

assign(X_369, 2 * (A_367 + B_368))
DD

else(stmts([]))),

assign(A_367, 100 / (X_369 - Y_370))

D,

no_exceptions)

))

Figure 8 - How the parser was used to build up a prolog term in example.pl
There is a lot more happening to make up the list of conditional clauses
and that is what shall next be looked into.

2.3 Parsing additions

The example program written in ada will be used as the base for the
following, this is a piece of code written to make it possible for a division by
zero to be possible and should be a good starting point.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 15

C: > Ada test code > Runtime errors > = example.adb > {} Example

Example
Foo (A : Integer)
X : Integer
Y : Integer
begin

(A + B);

100 / (X - Y);

Bar
A : Integer
B : Integer
begin
Foo(A, B);
Bar;
Example;

Figure 9 -Example.adb, used to run the as a test program

In order to determine if the divisor is going to be zero, an additional prolog
function will need to be constructed to take anything after the division
token and determine symbolically if there is a possibility of that being equal

to zero.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 16

else if(!strncmp($2, " / ", 3))

{
$$.id = malloc(SAFETY+strlen(tmp_s)+strlen($1.id)+strlen($2)+strlen($3.1id)+10);
itoa(runtime_nb++, tmp_s, 10);
print_coverage_details(RUNE, tmp_s, current_unit, yylineno, column+1);
strcpy($$.id, $1.id);
strcat($$.id, $2);

strcat($$.id, "runel(|");
strcat($$.1d,
strcat($$.id,
strcat($$.1d,
strcat($$.id, "

Figure 10 - Addition to the ada.y file to construct a new prolog function whenever a division token is
encountered

Figure 9 above shows a new else if statement constructed in the ada.y file
to explain that whenever a division symbol is encountered it should wrap
what follows that token into a new prolog function, called ‘rune’ here for
runtime error.

This will then allow prolog and the solver to determine if there is a way for
the following tokens to equate to being zero under any circumstance.

stmts ([
if_stmt([if_clause(bran(1, deci(1, cond(1, A_367 <> 0))),
stmts ([
assign(Y_370, 3 + X _369)
M
else(stmts([]1))),
if_stmt([if_clause(bran(2, deci(2, cond(2, B_368 = 0))),
stmts ([
assign(X_369, 2 * (A 367 + B_368))
M
else(stmts([]1))),
assign(A_367, 10 / rune(1l, (X_369 - Y_370))))

1,

no_exceptions|)

))

Figure 11 - New prolog function addition run on example.adb

As can be seen in figure 10 above everything after the division token is now
past into the rune function. A print coverage detail was also added into the
ada.y file and the produced output in the prolog file is as such.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 17

cond(1l, ‘'example', ‘example', ‘. ', 'C: code\Runtime errors'
bran(l, ‘example’, ‘example’, '. ', 'C: code\Runtime errors’
deci(1l, ‘example’, ‘example’, °. ', 'C: code\Runtime errors’
cond(2, ‘'example', ‘example', ‘. ', 'C: code\Runtime errors'

bran(2, ‘example’, ‘example', ‘. ', 'C: code\Runtime errors’
deci(2, ‘example’', ‘example’, . ', 'C: code\Runtime errors’
rune(l, ‘'example’, ‘example', . "y T(Cs code\Runtime errors’

Figure 12 - Coverage details generated in the prolog file

Other minor additions were also added to the ada.y file such as the
definition of RUNE as 4, instantiating the an integer variable named
runtime_nb as 1, used to track the number of times the RUNE function has
been called and a new case added to the switch statement to handle the
the additional rune function also.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 18

#define YYSTACK_SIZE 1000 //Parser generator constant
#define SAFETY 5 //number of characters added to malloc
#define COND ©

#tdefine GATE 1
#define DECI 2
#define BRAN 3
#define RUNE 4

Figure 13 - Definition of RUNE

int condition_nb = 1; //counter for the number of conditions

int gate_nb = 1; //counter for individual gate

int decision_nb = 1; //counter for the number of decisions

int branch_nb = 1; //counter for the number of branches

int runtime_nb = 1; //counter for the number of runtime error checks

Figure 14 - Instantiation of runtime_nb

void print_coverage_details(int type, char * number, struct unit_type *unit, int line, int column)
o
switch (type) {

case COND : fprintf(Fcond_ids, "cond(");
break;

GATE : fprintf(Fcond_ids, "gate(");
break;

DECI : fprintf(Fcond_ids, "deci(");
break;

BRAN : fprintf(Fcond_ids, "bran(");
break;
RUNE : fprintf(Fcond_ids, “"rune(");
break;
default : fprintf(stdout, "Mika ERROR: unknown type of coverage %i in print_coverage_details”, type);
fflush(stdout);
my_exit(31);

Figure 15 - Print coverage details additional switch case

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 19

1 indexed_component : name ‘(' value_list ')’
{$$ = malloc(SAFETY+strlen(tmp_s)+strlen($1l)+strlen($1)+strlen($l)+strlen($3)+strlen($3)+strlen($3)+56);
itoa(runtime_nb++, tmp_s, 10);
print_coverage_details(RUNE, tmp_s, current_unit, yylineno, column+l);
strcpy($$, "indexed(");
strcat($$, $1);
strcat($$, ", [");
strcat($$, “"rune(");
strcat($$, tmp_s);
strcat($$, ", ");
strcat($$, $3
strcat($$, " 5
strcat($$, "tic(");
strcat($$,
strcat($$, ",
strcat($$, $3
strcat($$, "
strcat($$, "tic(");
strcat($$,)§
strcat($$, ",
strcat($$, $3

free($1);
free($3);

Figure 16 - additions to indexed_component to construct the correct checks within the generated prolog file

Further additions were made to the ada.y parser to take into account the
indexed element used when an array is being indexed with a value. This
addition took the same form as the division by zero additions, it just
increased in complexity.

The usage of the tic() here is used to make use of the Ada element'First
and element’Last that returns the value of the first and last index value of
what is being referenced. This would construct a prolog relationship to
determine if the supplied value fell within the range of the index of the
array. At this stage it became apparent that the parser was not going to be
a viable option for the continuation of this approach, as the parser is not
smart enough to be able to tell the types of the elements it is dealing with.
For instance an indexed component could be any of the following: an array
access, a function or procedure call, a type conversion, or a subtype
indication with index constraint. As the purpose of the inserted additions
focused solely on array indexing, the additions that would be inserted upon
encountering any of the other indexed elements would either be
unnecessary or could even cause a crash.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 20

3. Extension Idea

As discussed above the idea for the extension would be to have the
developer insert an annotation into the code at a specified line asking
under what conditions certain variables could have the provided values.
The extension would then run the saved code through the parser where
there would have to be adjustments made to handle these comments and
add an additional step to the generated prolog file. Once the file has been
parsed then the test input generation would be able to provide inputs where
available to match the supplied annotation.

There are a few hurdles to consider here, mainly that to run the parser there
are certain paths that need to be provided, the most simple option may be
to have the developer supply these paths in other annotations at the top of
the code and then they could be pulled out and run in the command line
once the parser is running.

Upon further research there is an extension settings page available [54]
where these paths can be supplied directly and then the extension can pull
from these values upon calling Mika.

The parser (mika_ada_parser.exe) and the test input generator
(mika_ada_generator.exe) also need to be present in the current path where
the command line is being run from, so these would have to be copied over
to the working directory prior to running any commands.

The Mika parser and generator can also be referenced relatively and as
such no need for copying files is needed here.

Ada Runtime Error Generator | Design Document
C00231080 | Derry Brennan | Page 21
Example
Foo (A : Integer)

Integer
Integer

2 * (A + B);

A :=100 / (X - Y);
Foo;

Bar
A : Integer
B : Integer
begin
Foo(A, B);
Bar;
Example;

Figure 17 - Example Ada code used to demonstrate the special --#Mika comment to be used

In order to execute the proposed idea, firstly an addition to the lexical
analyzer needs to be made. A token to represent the comment “-#MIKA.*"
needs to be written. Comments are usually ignored during the lexical
analyzer phase but now a new condition or regex needs to be implemented
that will add what follows the start of the comment as valid code to be
worked upon in the parser.

Ada Runtime Error Generator | Design Document
C00231080 | Derry Brennan | Page 22

The extension can scan the source code for the presence of the special
comment “-#MIKA*" and then pull out the string following the “MIKA” in
the comment. In this way the boolean condition supplied by the developer
can be inserted into a procedure call that will then be analyzed by Mika for
its validity and the variable values that would lead it to be true.

Another idea would be to have the developer highlight the line they are
interested in and supply valid Ada code in the form of a boolean expression
in relation to the variables they are looking to have test input generated for
to reach this line of code and have those variables match the provided
condition. Using the example from above, the developer highlights line 12
and provides Y =4 and X = 2.

The extension would then make a copy of the code and insert a dummy
procedure that would take in a boolean as an argument and also insert a
call of this procedure at the specified line with the provided boolean
condition inserted as its parameter. By taking this route the cross
referencer will know that the variables that are being referred to are the
ones within the scope of the code block, the comment route would have
left the specific variable very ambiguous. This way will also preserve the
source code and no edits would have to be carried out on that as the copy
of the code can be deleted once the test inputs have been generated. Some
of the complications that arise from this choice will be that the line
numbering from the source code and the copied code with a procedure call
and the procedure itself will not match up. An example is shown below of
how this might look within a previously used example code, with the
dummy procedure added from line 1-3 and the procedure itself being called
on line 19 within the constraint procedure.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 23

C: > Users > derry > Documents > GitHub > MikaRuntimeError > RuntimeErrors > = constraint.adb > & Constraint

SecretMikaCall(E : Boolean)

begin
SecretMikaCall;

Constraint
Custom_Int Integer .. 50;
Index 1.. 10;
Custom_Int_Array (Index) Custom_Int;
Arrayl: Custom_Int_Array := (1,2,3,4,5,6,7,8,9,10);
: Custom_Int := 4;
: Custom_Int := 1;
: Index := 2;
: Index := 4;
: Custom_Int :

10 /= ©
T := 10;
SecretMikaCall(yY
Arrayl (R) :=
Constraint;

Figure 18 - Ada code to show an example of the SecretMikaCall procedure definition and call within a
program

As a proof of concept the manual addition of this procedure will be inserted
into the packages that come as example code with mika. Instead of the
procedure being inserted at the top of the package it will be inserted at the
end of the package instead. This will be to account for a variable number of
imports that a package might have and also decrease the calculations
needed to maintain the correct line numberings with the original file.

Both the maxim.adb and array_date.adb compiled with the addition of the
dummy procedure. This was not without issues,as it required an addition to
the .ads file also and it was required to be above the Mika_Test_Point
procedure.This seems to be due to this procedure being housed in a
separate file as specified by the “is separate” in the procedure declaration.

Ada Runtime Error Generator | Design Document
C00231080 | Derry Brennan | Page 24

This could cause some issues if using separate procedures is common
outside of these particular examples as it would require additional steps to
determine if a separate procedure is present in the code.

C: > Users > derry > Documents > GitHub > MikaRuntimeError > ExtProcedureExample > = maximum.adb > {} maximum

maximum
Exchange(X, Y : my_float)

T : my_float;
begin
T :=
Y :=
X :=
Exchange;

Maximum(X, Y : my_float)

begin
X>Y
Max := X;

Exchange(X, Y);
Max := X;
N
SecretMikaCall(X > Y);
Maximum;

SecretMikaCall(E: Boolean)
begin
H

SecretMikaCall;

Mika_Test_Point(Test_number : Integer)
begin

H
maximum;

PROBLEMS (1 OUTPUT DEBUG CONSOLE TERMINAL

PS C:\Users\derry\Documents\GitHub\MikaRuntimeError\ExtProcedureExample> gnatmake .\maximum.adb
PS C:\Users\derry\Documents\GitHub\MikaRuntimeError\ExtProcedureExample> I

Figure 19 - A test to see if the procedure definition could come after the call in the flow of a package

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 25

C: > Users > derry > Documents > GitHub > MikaRuntimeError > ExtProcedureExample > = maximum.ads > {} maximum > & Mika_Test_Point
maximum
my_ float float -100000.0 .. 100000.0;
Max : my_float;

Maximum(X, Y : my float);
Mika_Test_Point(Test_number : Integer);
SecretMikaCall(E: Boolean);

maximum;

Figure 20 - figure 19 layout only works with an addition to the files .ads file also

C: > Users > derry > Documents > GitHub > MikaRuntimeError > ExtProcedureExample > = array_date.ads > {} array_date > @ Mika_Test_Point
array_date
name_t (mon, tue, wed, thu, fri, sat, sun);
year_t 1900 .. 3000;
day_t ilo o L
month_t (jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec);
date_t

name : name_t;
day : day_t;

month : month_t;
year : year_t;

index 1..50;
list (index) date_t;
InsertionSort(L: list);
Mika_Test Point(Test_number : Integer);
SecretMikaCall (E: Boolean);
array_date;

Figure 21 - another test of inserting procedure definition into an .ads file, it was determined this was
unnecessarily complicated

The addition of the procedure to the .ads file was necessary as the
procedure was being called before its declaration in the code and at the
time of the call the procedure is unknown if it is not supplied in the .ads file.
A test of this with adding the dummy procedure call to the top of the
package and removing it from the .ads file will confirm this.

As can be seen in the below images, having the dummy procedure at the
top of the package only requires for the .adb file to have an addition made
to it. Going forward the best practice of where the insertion should take
place will be determined by some practical experimentation.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 26

C: > Users > derry > Documents > GitHub > MikaRuntimeError > ExtProcedureExample > = maximum.adb > {} maximum > @ Exchange

maximum

SecretMikaCall(E: Boolean)
begin

SecretMikaCall;
Exchange(X, Y : my_float)

T : my_float;
begin
T :=
Ve 8=
X :=
Exchange;

Maximum(X, Y : my_float)

Exchange(X, Y);
Max := X;
H
SecretMikaCall(X > Y);
Maximum;

Mika_Test_Point(Test_number : Integer)

begin

maximum;

QUTPUT DEBUG E TERMINAL

PS C:\Users\derry\Documents\GitHub\MikaRuntimeError\ExtProcedureExample> gnatmake .\maximum.adb
gce -¢ -I.\ -I- .\maximum.adb
PS C:\Users\derry\Documents\GitHub\MikaRuntimeError\ExtProcedureExample> |:|

Figure 22 - By defining the SecretMikaCall procedure at the start of the package, no additions to the .ads file
were necessary

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 27

C: > Users > derry > Documents > GitHub > MikaRuntimeError > ExtProcedureExample > = maximum.ads > {} maximum
maximum
my_float float -100000.0 .. 100000.0;
Max : my_float;

Maximum(X, Y : my_float);
Mika_Test Point(Test_number : Integer);

maximum;

Figure 23 - Removal of the SecretMikaCall from the .ads file

Another problem that was encountered in the process of making a copy of
the files being worked on was that a change in the name of the file also
required a change in the name of the package within the file at both the
definition of the package and at its end. This also spilled over into the
packages .ads file which would also need to have alterations made to it in
order to compile the file. Whereas if a new folder was created and all the
files in the current directory were copied over, alterations could be made to
the file in question while maintaining the original integrity and avoiding the
need for messy renaming.

This requires a bit of refactoring of what had already been done, but will
hopefully pay off in the future.

At present the extension has two commands. One command is for the
developer to enter a comment into the code at the line they wish to have a
particular test carried out.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 28

Maximum(X, Y : my_float)

begin
X>Y
Max := X;

Exchange(X, Y);

Maximum;

Figure 24 - Example of the Mika comments within code and the structure that they take

The example above is not correct though as X and Y are both of my_float
type and this would not compile as Gnat sees a comparison between
different types as a compilation error.

PS C:\Users\derry\Documents\GitHub\MikaRuntimeError\ExtProcedureExample\SecretMikaFolder> gnatmake .‘\maximum.adb
gce -c -T.\ -TI- .\maximum.adb

maximum.adb:27:18: invalid operand types for operator "="

maximum.adb:27:18: left operand has type "my_float" defined maximum.ads:2
maximum.adb:2 8: right operand has type universal integer

maximum.adb: 2 left operand has type "my float" defined at maximum.ads:2
maximum.adb:: ght operand has type universal integer

maximum.adb: 30 walid operand types for operator "="

maximum.adb:3 left operand has type "my float" defined at maximum.ads:2
maximum.adb: 30 ght operand has type universal integer

maximum.adb : 30 : invalid operand types for operator "="

maximum.adb: 36 : left operand has type "my float" defined at maximum.ads:2
maximum.adb: 36 right operand has type universal integer

gnatmake: ".\maximum.adb" compilation error

Figure 25 - Errors highlighting the fact that the developer must supply correct syntax and typing for the
boolean condition. Here Integers were entered while X & Y were of type my_float

It will be up to the developer to provide valid Ada code in the comment
provided. If the provided comment is not valid Ada code the compilation of
the generated file will fail and an error message of "Mika failed to generate
test inputs, Please check syntax of supplied comment condition" will be
displayed to the user.

Ada Runtime Error Generator | Design Document
C00231080 | Derry Brennan | Page 29

The second command is run after comments have been entered into the
code. This will make a new folder in the directory where the original Ada file
was located called “secretMikaFolder”. It also copies in the files from that
directory to account for the .ads file and any other dependencies.

It then inserts the procedure calls with the supplied parameters into the line
numbers provided and also the definition of the SecretMikaCall to the start
of the package.

Below is an image of the original file with the developer comments
provided.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 30

£ maximum.adb C3\..\ExtProcedureExample X £ maximum.adb
cuments > GitHub > MikaRuntimeError > ExtProcedureExample > £ maximum.adb > {} maximum

maximum
Exchange(X, Y : my_float)

T : my_float;
begin
IF =
Y .
X :
Exchange;

Maximum(X, Y : my float)

begin
X>Y
Max := X;

Exchange(X, Y);

Maximum;

Mika_Test_Point(Test_number : Integer)
begin

maximum;

Figure 26 - comments entered while respecting the correct types used within the program

Followed by the copied file in the new folder with the procedure definition
and calls programmatically entered.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 31

£ maximum.adb C: retMikaFolder X

cuments > GitHub > MikaRuntimeError > ExtProced xample > £ maximum.adb > {} maximum

maximum

SecretMikaCall(E : Boolean)
begin
5

SecretMikaCall;
Exchange(X, Y : my_float)

T : my_float;
begin
T :=
Y =
X :=
Exchange;

Maximum(X, Y : my_float)

Exchange(X, Y);
Max := X;

SecretMikaCall(X = my_float(5) Y = my_float(15));

)

SecretMikaCall(X = my_float(50) Y = my_float(1));
Maximum;

Mika_Test_Point(Test_number : Integer)
begin

Figure 27 - Example of the programmatically entered Procedure declaration and calls for each comment

The tab spacing is off but gnat has no problem understanding and
compiling this code and as the copied file will be deleted after test inputs
are generated this shouldn’t be an issue.

The next issues to tackle are the calling of the mika_ada_parser and the
mika_ada_generator from the terminal within visual studio code and

Ada Runtime Error Generator | Design Document
C00231080 | Derry Brennan | Page 32

handling the deletion of the new folder containing the copied files after the
test inputs have been generated.

Some consideration has to be taken of line numbering also, as the insertion
of the procedure definition and calls will now not match to the line
numbering in the source file.

Also there will be a new case in the parser looking for this SecretMikaCall()
along the same lines as what was written for the runtime exceptions, the
rune().

Moving on, it is also necessary to consider the programmatic
implementation of both the parsing stage using mika_ada_parser and the
test input generation using mika_ada_generator within the extension. Once
the comments have been entered and the dummy procedure
implementation and calls have been added to the copied file the next step
will be to run the parser on the file.

To do this the user must supply their path to both Mika's bin folder and
gnat'’s bin folder located by default at:

e C(C:\Users\[username]\AppData\Roaming\Midoan\Mika\bin
e (C:\GNAT\2010\bin

A settings page for the extension has been added where the user can
update their particular paths.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 33

mika-annotations-ada--js-

Gnat Path

C:\GNAT\2010\bin

Mika Path

C:\Users\derry\AppData\Roaming\Midoan\Mika\bin

Figure 28 - The extensions setting options for obtaining GNAT & Mika path if non defaults paths are used

The extension will perform a check to make sure both paths provided exist
before continuing on.

config =

vscode.workspace.getConfiguration("mika-annotations-ada--js-");
mp = config.mikaPath;
gp = config.gnatPath;
if(fs.existsSync(mp) && fs.existsSync(gp)) {
terminal = vscode.window.createTerminal();
terminal.show();

terminal.sendText(cd ${mikaFolder});

terminal.sendText(${mp separator}mika ada_parser.exe

-M"${mp}" -f"${gp}" -gnatd5 -d ${nameMinusExt}’);

terminal.sendText(cd

mikaFolder}${separator}${nameMinusExt} mika);

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 34

terminal.sendText(${mp}${separator}mika ada generator.exe

-M"${mp}" -SMaximum -Tbranch -Cignored -d ${nameMinusExt});

}

Figure 29 - Checks performed to make sure both paths exist before progressing

The first command to the terminal enters the newly created folder and once
there calls on the mika_ada_parser located in Mika's bin folder, passing in
the mikaPath with -M flag and gnatPath with -f flag, the gnat version to be
used, here hard coded as -gnat05 and -d flag to enable debug mode along
with the name of the program to be parsed. Javascripts string interpolation
was used here to reuse the names of programs and paths which had
previously been found during the creation of the new folder containing the
files in question.

Once the parser has finished its process we next move into the folder that
the parser created, called [programName]_mika. This contains the
generated prolog file needed for the test input generator to run.

Then the call to the mika_ada_generator takes place, again requiring the
path to Mika's bin folder with the -M flag, the subprogram in question with
the -S flag, the type of coverage required with the -T flag and whether or not
to ignore the elaboration with the -C flag and again using the -d flag to
enable debug along with the name of the program.

The parsing of the program works well and creates the needed folder with
the generated prolog code and other relevant files as discussed in the Mika
User manual.

Moving on to how to present the outcome of the test results to the
developer; the thought had been to have the generator return the results in
JSON format such as:

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 35

"Test_Number":{
"variablel™ : "value",
"variable2™ : "value",

"variable3" : "value"

Figure 30 - Example format of the json file used to relay results from Mika to the extension

How to provide the developer details on the test inputs is still unclear, either
in a file created back in their original working directory or with a pop up in
Visual Studio Code itself. The final decision on how to display the test
inputs back to the developer will be to display them in a tab next to the
source code under test. This file can then be saved by the developer to a
location of their choosing through Visual Studio Code.

Now that the parsing and generation are working from within the Visual
studio code extension, work continues on with the idea of how to display
the resulting output from Mika. As shown above a JSON format was
chosen which would have the test number and the variable and values
contained within it that caused the provided condition to be true.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 36

Figure 31 - Json file with example values

A mockup of the JSON file was created to allow testing until the real one
could be generated.

With this in mind a decision had to be made as to how to display the tests
back to the user. A pop-up seemed like the best fit, but the pop ups in Visual
Studio Code are very small and would not be able to convey enough
information to the user to be helpful. As seen below they are really just for
important information and error messages.

@ Enter in some values in the comment e.g ‘X=7 and Y=10" and let Mika ...

Figure 32 - A pop up explanation that was eventually removed in favour of the readme file

The next choice of display was to open another tab beside the annotated
source code and to display the generated test inputs here, this way the
developer can see both the original source code and cross reference it with
the output from Mika.

As of now this file is not saved and it can be saved by the developer in a
location of their choosing if they so wish it.

Ada Runtime Error Generator | Design Document
C00231080 | Derry Brennan | Page 37

To accomplish this the original source file has to be annotated with a
special comment to get input from the developer, in this case “-#MIKA" is
being used, this is then followed by a valid boolean statement such as X =
15.0 or X > Y. There is a command within the extension called “Mika Ada
annotations”, this will insert a boilerplate comment on the highlighted line,
“~#MIKA 'enter the conditions you would like to be met here”. Once the
developer has entered the required number of comments, the validity of the
syntax in the provided comment is up to the developer, they can run the
next command “Mika generate test inputs”.

Mika generate test inputs is a multi process command. The first step is to
gather the Mika and Gnat paths from the extensions settings which can be
found under file -> preferences -> settings -> extensions ->
mika-annotations-ada—-js- . There are default paths provided but the
developer will need to provide accurate paths to these folders for the
extension to function properly. A check is conducted before running any
command line instructions as to whether the provided paths exist.

The next step is making a copy of the current directory of the file open in VS
code, this just copies all the files in the current directory to account for any
dependencies to the file under test but does not copy in additional folders.

This folder is named “SecretMikaFolder” and all the manipulations of the
file under test will happen on this copied version. The file open in VS code
is scanned and the comments and lines.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 38

get_mika_comment(code) {
commentsAndLineNos = [];
for(i =0; i < code.length; i++){
line = code[i].trim();
if(line.toLowerCase().startsWith("--#mika")) [
commentsAndLineNos.push([line.slice(line.indexOf("' ")).trim(),i+1]);

¥

return commentsAndLineNos;

Figure 33 - The code behind parsing the source code for the presence of -#Mika comments

This takes the boolean equation from the comment and the line number it
was found on and returns this container to the main function.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 39

4. Targeted Hardware/Software

The targeted platform is Windows 10 as Mika is untested on other
operating systems.

Dependencies of a GNAT Ada compiler and SICStus Prolog are also
required for the correct compilation of Ada code and the operation of Mika.

To use the Visual Studio Code Extension, Visual Studio code must be
installed and the paths to both Mika and GNAT added to the extensions
settings page if other than default paths were selected for either
installation.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 40

5. Algorithms

A number of algorithms were implemented in the application of the Visual
Studio Code extension for Mika. Below these will be shown screen shots of
each with a brief explanation of what is occurring.

5.1 Copy current Directory

function copy_current_dir() {
var paths = vscode.window.activeTextEditor.document.fileName.split(separator);
var name = paths.pop();
var fullPath = paths.join(separator);
var mikaFolder = fullPath + separator + NewMikaFolder;

if(!fs.existsSync(mikaFolder))

{

fs.mkdirSync(mikaFolder);
1
J]
var dirPaths = fs.readdirSync(fullPath);
for(let i = @; i < dirPaths.length; i++)
[
1

if (dirPaths[i].includes(Dot))

{

fs.copyFileSync(fullPath + separator + dirPaths[i], mikaFolder + separator + dirPaths[i]);
}

J
return [name, mikaFolder];

Figure 34 - Copy current directory function

This function takes the full path of the current file open in Visual Studio
Code (VS Code) and stores each section of the path in a list by splitting on
the ‘\’ separator.

The name of the current file is obtained by popping from the paths list. The
rest are then rejoined again on the ‘\' again and a new separator and new
Mika Folder name are also joined to the path.

If this new folder does not already exist it is created. All the non folder files
in the current path are then copied into the new folder to maintain the
integrity of the source code, any alterations to the code will happen on the
copied files.

Ada Runtime Error Generator | Design Document
C00231080 | Derry Brennan | Page 41

Once all operations are complete this function returns a tuple with the
name of the file being operated on in the ‘name’ variable and the full path to
the new Mika folder that was just created in the ‘mikaFolder’ variable.

5.2 Get Mika Comment

function get_mika_comment(code) {
var commentsAndLineNos = [];
var subProgram;
for(let i = @; i < code.length; i++){
let line = code[i].trim();
if(line.toLowerCase().startsWith("procedure ") || line.toLowerCase().startsWith("function ")){
subProgram = line.slice(line.indexOf(" '), line.indexOf('(")).trim();

}

if(line.toLowerCase().startsWwith("--#mika")) {
commentsAndLineNos.push([line.slice(line.indexOf(" ")).trim(),i+1]);
break;

}

i
4

return [commentsAndLineNos, subProgram];

Figure 35 - Get Mika comment function

In the get_mika_comment function we are looking for the subprogram
name the comment was inserted in and the boolean condition from the
comment, the line number the comment was entered on is also recorded.

Each procedure or function name encountered is stored in the ‘subProgram’
variable and once the mika comment is encountered everything after the
“-#mika " is stored as the comment and the index is stored as the line
number.

The tuple of the commentsAndLineNos and subProgram are then returned.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 42

5.3 Activate

activate(context) {

editor = vscode.window.activeTextEditor;

Figure 36 - Activate Function within the extension

The activate function is the main function of the extension, inside of it two
more functions are declared for the two commands available.

disposable =

vscode.commands.registerCommand('mika-ann

otations-ada--js-.genTestInput’,

() {

Figure 37 - Registration of a command name to a function

The function above handles the code run when the Mika Generate test
inputs are run.

* [name, mikaFolder] = copy_current_dir();
~ nameMinusExt = name.substring(@,name.length-4);
~ lines = editor.document.getText().split(NewLine);
[mikaComments, subProgram] = get_mika_comment(lines);
var package_body line_number = -1;
for(let i = @; i<lines.length; i++) {

if(lines[i].toLowerCase().includes(PackageBody)) {
package_body_line_number = i + 1;
break;

Figure 38 - Start of the Generate test input command

Ada Runtime Error Generator | Design Document
C00231080 | Derry Brennan | Page 43

The Generate test inputs command starts by calling the copy_current_dir
function, which returns the name of the file being worked on and the path to
the newly created Mika folder inside its containing folder. The
nameMinusExt variable saves the name of the file after removing its
extension e.g “.adb”.

The code is then stored in an array by splitting the code on each \n' (new
line) found within its text. And this is parsed over by the
get_mika_comment function which returns the subprogram the comment
was entered into and the boolean condition provided.

The code is also iterated over looking for the line number at which the
package body declaration is found in order to appropriately insert a new
procedure later on.

ar path = mikaFolder + separator + name;
var textOfCopy = fs.readFileSync(path).toString().split('\n");
/ar textOffset 0;
const insert_at_position = (arr,pos,element) => {
if(pos == 0){

return [element].concat(arr);

1
J

return arr.slice(0,pos).concat([element]).concat(arr.slice(pos));
s
for(let i = ©; i < mikaComments.length; i++){
let [comment,line_number] = mikaComments[i];
textOfCopy = insert_at_position(textOfCopy,line_number+(textOffset++)
,secret_mika_function_call.replace("{args}", ${i+1},%{comment}));

}

textOfCopy = insert_at_position(textOfCopy,package_body_ line_number,MikaProcedure);
textOfCopy = textOfCopy.join('\n');
fs.writeFileSync(path,textOfCopy);

Figure 39 - Code within generate test input that handles the insertion of secret Mika procedure and calls

The path to the copied file is stored in the variable ‘path’, the text of the
copied file is then saved in the variable textOfCopy using the same method
applied earlier.

Ada Runtime Error Generator | Design Document
C00231080 | Derry Brennan | Page 44

5.3.1 Insert_at_position

A function insert_at_position is declared to handle inserting extra lines into
the array of code lines saved earlier. This function takes an array (arr), the
position to insert at (pos) and the element to insert (element).

If the position is 0 we return the array with the new element concatenated
to the start of it, otherwise we return an array sliced at the position provided
with the element concatenated between the two slices.

The array of comments is iterated over and a new procedure call is inserted
into the code at the line number the comment was found at +1. (Currently
the extension only supports one comment per file but this list of comments
is a future proofing method designed to handle multiple comments at a
later stage also).

The new procedure is then inserted after all the comments have been
handled in order to not skew the line numbers the comments were found
at. And the array is joined back up on the new line character and resaved as
the copy of the file under test.

var config = vscode.workspace.getConfiguration("mika-annotations-ada--js-");

var mp = config.mikaPath;
var gp = config.gnatPath;

Figure 40 - Acquiring Paths from extensions settings

The paths to both mika and GNAT are obtained from the extensions
settings, the default paths for both Mika and GNAT are saved here initially, a
user who has them saved in a path other than default will need to update
these settings manually.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 45

if(fs.existsSync(mp) && fs.existsSync(gp)) {
commands = [
“cd mikaFolder} ,
“${mp separator}mika_ada_parser.exe -M"

-gnates -d nameMinusgxt} ,

“cd ${mikaFolder}${separator}${nameMinusExt} mika",
mp separator}mika_ada_generator.exe -M"${mp}" -S

subProgram} -Tquery -Cignored -d nameMinusgxt}’

13
Figure 41 - Commands used to call Mika stored in an array
If both paths exist an array of commands is defined, these commands are
the CLI commands Mika needs to run the dynamic code query on the file
and subprogram in question.

The node package child_process (cp) is then used to run these commands
synchronously in a shell where each command is run one after another
using the join on ‘' & ‘. this will allow this process to finish running before the
program proceeds as the output of these commands is need as the
program proceeds.

else {
vscode.window.showErrorMessage("Mika or GNAT paths are invalid.");

)

Figure 42 - Error message displayed to user if Either path does not exists

If either of the paths are invalid an error message is displayed to the user
stating as such.

Ada Runtime Error Generator | Design Document

C00231080 | Derry Brennan | Page 46

try{

var jsonFile = glob.sync(| ${mikaFolder}${separator}${nameMinusExt} mika
${separator}${nameMinusExt} *${separator}${nameMinusExt}.json)[@];
if (jsonFile === undefined)
throw "Error";
}
catch(e) {
vscode.window.showErrorMessage("Mika failed to generate test inputs");
return;

Figure 43 - Using Glob to search for newly created folder with date/time stamp in its name

Next, once the shell commands have finished running the glob package is
used to look for the produced folder which has a date/time appended to the
name of the file, glob is a pattern matching package for files, here we are
looking for the JSON file contained within this generated folder.

If the json file is not present an error message is returned stating that Mika
failed to generate test inputs.

ar text = fs.readFileSync(jsonFile);
ar json = JSON.parse(text);
vscode.workspace.openTextDocument().then((a) => {
vscode.window.showTextDocument(a,{viewColumn:vscode.ViewColumn.Beside}).then(e => {
e.edit(edit => {

et outer_keys = Object.keys(json);
et offset = 6;
edit.insert(new vscode.Position(@, ©), MIKAHEADER);
for(i=@;i<outer_keys.length;i++)

edit.insert(new vscode.Position(i+(offset++), @), LINES);
let test_string with_number = TEST_NUMBER_STRING + (i+1) + "\n";
edit.insert(new vscode.Position(i+(offset++), @), test_string_with_number);
edit.insert(new vscode.Position(i+(offset++), @), CONSTRUCTED TEST_INPUT);
Object.keys(json[outer_keys[i]]).forEach(function(key){
edit.insert(new vscode.Position(i+(offset++), 0), ${key} = ${json[outer_keys[i]][key]}\n);
s
edit.insert(new vscode.Position(i+(offset++), @), LINES);
edit.insert(new vscode.Position(i+(offset++), 0),"\n");

b

s

}, (error) => {
console.error(error);
return;

1)
Figure 44 - Generation of the new tab displaying results from Mika to the User

Once the Json file has been located and parsed the code above handles the
creation of the new tab to be displayed with the results. A variable offset is
assigned a value of 6 to account for the header to be applied to the file, the
rest handles the insertion of the test inputs found within the JSON file.

Ada Runtime Error Generator | Design Document
C00231080 | Derry Brennan | Page 47

Again this was designed with multiple comments in mind, but will handle
the single comment currently supported as well.

fs.rmdirSync(mikaFolder, {recursive: s

Figure 45 - Removal of the directory containing copied files used for input generation

Finally the newly created folder containing the copies of the files and the
generated files is removed, leaving the developer to save the displayed test
inputs in a location of their choosing using VS code.

let disposable2 = vscode.commands.registerCommand('mika-annotations-ada--js-.adaannotations', function () {
ar editor = vscode.window.activeTextEditor;

editor.insertSnippet(new vscode.SnippetString(MikaComment, editor.selection.active));

})s
Figure 46 - Simple command used to insert boilerplate Mika comment at highlighted line in the text editor

The function above handles the code when the Mika Ada annotations
command is run. As can be seen the current position of the cursor is taken
from the active text editor and then the boilerplate comment is inserted at
that line.

vscode = require('vscode');
fs = require('fs');

glob = require('glob’);
cp = require('child process');

Figure 47 - Required Node.js packages for the extension

These are the node.js packages used within the extension, the vscode
package allows direct access to the VS code text editor, fs (filesystem)
allows for the creation and deletion of files and directories, glob is a file
pattern matching package allowing for the selection of a file we do not
know the exact path to due to generated date/time names on a folder in the
path to that file and the child_process package creates a new child process

Ada Runtime Error Generator | Design Document
C00231080 | Derry Brennan | Page 48

to the extension process allowing for the synchronous running of the
terminal commands within that child process.

separator = "\\";

NewMikaFolder = "SecretMikaFolder";

MikaProcedure = "\nprocedure SecretMikaCall(ID : in Integer; E : in Boolean) is\nbegin\n\tnull;\nend SecretMikaCall;\n";
MikaComment = "--#MIKA ‘enter the conditions you would like to be met here'";

PackageBody = "package body";

NewLine = "\n";

Dot = ".";

secret_mika_function_call = "SecretMikaCall({args});\n";
LINES = *

TEST_NUMBER_STRING = "TEST
CONSTRUCTED_TEST_INPUT =
MIKAHEADER = ~
M TEST INPUTS GENERATOR
https://github.com/echancrure/Mika --\n";

Figure 48 - Constant values for Strings used within the extension

A number of constant strings were also declared in order to keep the
algorithm's code tidy and not cause any unnecessary slow down during
operation.

References

[1] Core, A., 2021. About Ada. J[online] AdaCore. Available at:
<https://www.adacore.com/about-ada> [Accessed 11 April 2021].

https://www.adacore.com/about-ada

